Page 1 of 7 Primary Brain Lesion-Diffuse Glioma – Adult (Greater than or equal to 18 years old) **MD**Anderson Cancer Center

Making Cancer History®

THE UNIVERSITY OF TEXAS

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson's specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. This algorithm should not be used to treat pregnant women.

Note: Consider Clinical Trials as treatment options for eligible patients.

RADIOLOGICAL PRESENTATION

PRESURGICAL PLANNING

TREATMENT

- Imaging study suggestive of glioma¹
- Discuss Goal Concordant Care (GCC) with patient or if clinically indicated, with Patient Representative²
- Consider pre-op neuropsychological evaluation for cognitive symptoms

Biopsy first if MRI suggestive of CNS lymphoma or non-tumor diagnosis. Observation may be appropriate for some lesions.

²GCC should be initiated by the Primary Oncologist. If Primary Oncologist is unavailable, Primary Team/Attending Physician to initiate GCC discussion and notify Primary Oncologist. Patients, or if clinically indicated, the Patient Representative should be informed of therapeutic and/or palliative options. GCC discussion should be consistent, timely, and re-evaluated as clinically indicated. The Advance Care Planning (ACP) note should be

used to document GCC discussion. Refer to the GCC home page (for internal use only)

³ For select patients, other surgical options can be considered including laser interstitial thermal therapy (LITT)

⁴ Consider for patients with a pre-operative neuropsychological evaluation and strongly consider prior to the start of adjuvant therapy

⁵ Includes grade 3 Astrocytoma IDH-mutant and grade 3 Oligodendroglioma, IDH-mutant and 1p/19q codeleted

⁶ Includes grade 2 Astrocytoma IDH-mutant and grade 2 Oligodendroglioma, IDH-mutant and 1p/19g codeleted

Page 2 of 7 Primary Brain Lesion-Diffuse Glioma – Adult (Greater than or equal to 18 years old) **MD**Anderson **Cancer** Center

Making Cancer History®

THE UNIVERSITY OF TEXAS

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson's specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. This algorithm should not be used to treat pregnant women.

Department of Clinical Effectiveness V6

Approved by the Executive Committee of the Medical Staff on 08/15/2023

Page 3 of 7 Primary Brain Lesion-Diffuse Glioma – Adult (Greater than or equal to 18 years old) **MDAnderson** Cancer Center

Making Cancer History®

THE UNIVERSITY OF TEXAS

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson's specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. This algorithm should not be used to treat pregnant women.

Note: Consider Clinical Trials as treatment options for eligible patients.

• Neurologic evaluation

PCV = procarbazine, lomustine, and vincristine

¹Reflected as new baseline; pseudoprogression may be noted

² MRI Brain with and without contrast unless contraindicated

³ Monitoring/prevention while on therapy:

Constipation

• Pneumocystis pneumonia prophylaxis

• Labs: CBC twice a month and CMP once a month • Intracranial pressure (ICP) Copyright 2023 The University of Texas MD Anderson Cancer Center

Department of Clinical Effectiveness V6

Supportive Care

Approved by the Executive Committee of the Medical Staff on 08/15/2023

⁴ Based on following factors: KPS performance status, extent of residual disease, imaging, patient's personal preferences

⁵ Refer to Karnofsky Performance Status (KPS) Scale (see Appendix A)

⁶ Surgical interventions include craniotomy or LITT

Page 4 of 7 Primary Brain Lesion-Diffuse Glioma – Adult (Greater than or equal to 18 years old) MDAnderson Cancer Center

Making Cancer History®

THE UNIVERSITY OF TEXAS

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson's specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. This algorithm should not be used to treat pregnant women.

Page 5 of 7 Primary Brain Lesion-Diffuse Glioma – Adult (Greater than or equal to 18 years old)

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson's specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. This algorithm should not be used to treat pregnant women.

APPENDIX A: Karnofsky Performance Status Scale Definitions

Able to carry on normal activity and to work; no special care needed	100	Normal; no complaints; no evidence of disease
	90	Able to carry on normal activity; minor signs or symptoms of disease
	80	Normal activity with effort; some signs of disease
Unable to work; able to live at home and care for most personal needs; varying amount of assistance needed	70	Cares for self; unable to carry on normal activity or to do active work
	60	Requires occasional assistance, but is able to care for most of his personal needs
	50	Requires considerable assistance and frequent medical care
Unable to care for self; requires equivalent of institutional or hospital care; disease may be progressing rapidly	40	Disabled; requires special care and assistance
	30	Severely disabled; hospital admission is indicated although death not imminent
	20	Very sick; hospital admission necessary; active supportive treatment necessary
	10	Moribund; fatal processes progressing rapidly
	0	Dead

Page 6 of 7 Primary Brain Lesion-Diffuse Glioma – Adult (Greater than or equal to 18 years old) DAnderson

Making Cancer History®

THE UNIVERSITY OF TEXAS

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson's specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. This algorithm should not be used to treat pregnant women.

SUGGESTED READINGS

- Cairncross, G., Wang, M., Shaw, E., Jenkins, R., Brachman, D., Buckner, J., ... Mehta, M. (2012). Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: Long-term results of RTOG 9402. Journal of Clinical Oncology, 31(3), 337-343.
- Chinot, O. L., Wick, W., Mason, W., Henriksson, R., Saran, F., Nishikawa, R., ... Brandes, A. A. (2014). Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. New England Journal of Medicine, 370(8), 709-722.
- Fine, H. A., Dear, K. B., Loeffler, J. S., Mc Black, P. L., & Canellos, G. P. (1993). Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer, 71(8), 2585-2597.
- Friedman, H. S., Prados, M. D., Wen, P. Y., Mikkelsen, T., Schiff, D., Abrey, L. E., ... Vredenburgh, J. (2009). Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. Journal of Clinical Oncology, 27(28), 4733-4740.
- Gilbert, M. R., Dignam, J. J., Armstrong, T. S., Wefel, J. S., Blumenthal, D. T., Vogelbaum, M. A., ... Jeraj, R. (2014). A randomized trial of bevacizumab for newly diagnosed glioblastoma. New England Journal of Medicine, 370(8), 699-708.

Harsh, G. R., Levin, V. A., Gutin, P. H., Seager, M., Silver, P., & Wilson, C. B. (1987). Reoperation for recurrent glioblastoma and anaplastic astrocytoma. Neurosurgery, 21(5), 615-621.

Hentschel S. J., & Sawaya R. (2003). Optimizing outcomes with maximal surgical resection of malignant gliomas. Cancer Control 10(2), 109-114.

- Laws, E. R., Parney, I. F., Huang, W., Anderson, F., Morris, A. M., Asher, A., ... Berger, M. S. (2003). Survival following surgery and prognostic factors for recently diagnosed malignant glioma: Data from the Glioma Outcomes Project. Journal of Neurosurgery, 99(3), 467-473.
- MD Anderson Institutional Policy #CLN1202 Advance Care Planning Policy. Advance Care Planning (ACP) Conversation Workflow (ATT1925)
- National Comprehensive Cancer Network (2022). Central Nervous System Cancers, (NCCN Guideline, Version 2.2022). Retrieved from https://www.nccn.org/professionals/physician_gls/ pdf/cns.pdf
- Roa, W., Brasher, P. M. A., Bauman, G., Anthes, M., Bruera, E., Chan, A., ... Husain, S. (2004). Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. Journal of Clinical Oncology, 22(9), 1583-1588.
- Souhami, L., Seiferheld, W., Brachman, D., Podgorsak, E. B., Werner-Wasik, M., Lustig, R., ... Zamorano, L. (2004). Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. International Journal of Radiation Oncology. Biology. Physics, 60(3), 853-860.
- Stewart, L., & Burdett, S. (2002). Chemotherapy for high-grade glioma. Cochrane Database of Systematic Reviews, (4).
- Stupp, R., Mason, W. P., Van Den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., ... Curschmann, J. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine, 352(10), 987-996.
- van den Bent, M. J., Brandes, A. A., Taphoorn, M. J., Kros, J. M., Kouwenhoven, M. C., Delattre, J. Y., ... Sipos, L. (2012). Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. Journal of Clinical Oncology, 31(3), 344-350.

Page 7 of 7 Primary Brain Lesion-Diffuse Glioma – Adult (Greater than or equal to 18 years old)

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson's specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. This algorithm should not be used to treat pregnant women.

DEVELOPMENT CREDITS

This practice algorithm is based on majority expert opinion of the Primary Brain Lesion Work Group Faculty at the University of Texas MD Anderson Cancer Center. It was developed using a multidisciplinary approach that included input from the following:

Core Development Team Leads

Shiao-Pei Weathers, MD (Neuro-Oncology) Debra N. Yeboa, MD (Radiation Oncology)

Workgroup Members

Leomar Ballester, MD, PhD (Pathology, Anatomical) Olga N. Fleckenstein, BS[•] Kaitlin Highsmith, PharmD (Pharmacy Clinical Programs) Thoa Kazantsev, MSN, RN, OCN[•] Sujit S Prabhu, MD (Neurosurgery) Komal Shah, MD (Neuroradiology) Jeffrey Wefel, PhD, ABPP (Neuropsychology)

* Clinical Effectiveness Development Team